
P5.1-4) A man pushes a 100-lb wooden crate along a concrete floor. What is the acceleration of the crate if he applies a force of P=100 lb at an angle of $\theta=20^{\circ}$? Assume that the kinetic coefficient of friction is 80% that of the static coefficient of friction which may be found in Appendix C.

Given:

Find:

Solution:

Free-body diagram

Check if the crate will slide.

Write down the crate's equation of equilibrium, in <u>variable form</u>, in the direction of intended motion.

Calculate the maximum static friction force.

$F_{fs,max}$	=					
3 ,						

Will the crate slide?

Yes No

Why? _____

Equation of Motion

Derive the crate's equation of motion, in variable form.

Eq.E: _____

Solve for the static friction force.

 $F_{fs} = \underline{\hspace{1cm}}$

Eq.M: _____

Calculate the kinetic friction.
$F_{fk} = \underline{\hspace{1cm}}$
Calculate the crate's acceleration

 $a = 8.81 \text{ ft/s}^2$